AI-Powered Software Development Life Cycle: From Requirements to Maintenance
DOI:
https://doi.org/10.64229/ykh1jf83Keywords:
Artificial Intelligence, Software Development Life Cycle, Human-AI Collaboration, Digital Transformation, Automated TestingAbstract
The integration of artificial intelligence into software development represents a paradigmatic shift with profound implications for productivity, quality, and efficiency in modern software engineering practices. This viewpoint paper aims to examine the comprehensive application of generative AI technologies across all Software Development Life Cycle (SDLC) phases, analyze their transformative potential, and provide strategic insights for successful implementation. Through systematic analysis of recent empirical studies and practical implementations, we conducted a comprehensive review of AI applications spanning requirements analysis, system design, coding, testing, deployment, and maintenance phases. AI demonstrates significant capabilities in automating code generation, enhancing testing strategies, optimizing deployment processes, and enabling proactive maintenance approaches. Key applications include natural language processing for requirements refinement, intelligent architecture recommendations, comprehensive test suite generation, and predictive bug detection. Research Implications: Successful AI integration requires gradual implementation strategies, robust quality assurance mechanisms, and maintaining human oversight for critical decisions. Organizations must balance AI automation with human expertise, addressing ethical considerations and security concerns while fostering continuous learning approaches that align AI capabilities with organizational standards and domain-specific requirements.
References
[1]Amin, A. A., Iqbal, M. S., & Shahbaz, M. H. (2023). Development of intelligent fault-tolerant control systems with machine learning, deep learning, and transfer learning algorithms: A review. Expert Systems with Applications, 238, 121956. https://doi.org/10.1016/j.eswa.2023.121956
[2]Behera, A., & Acharya, A. A. (2025). An effective GRU-based deep learning method for test case prioritization in continuous integration testing. Procedia Computer Science, 258, 4070-4083. https://doi.org/10.1016/j.procs.2025.04.658
[3]Gutiérrez-Avilés, D., Jiménez-Navarro, M. J., Torres, J. F., & Martínez-Álvarez, F. (2025). MetaGen: A framework for metaheuristic development and hyperparameter optimization in machine and deep learning. Neurocomputing, 637, 130046. https://doi.org/10.1016/j.neucom.2025.130046
[4]Han, J. Y., Hsu, C. R., & Huang, C. J. (2024). Automated progress monitoring of land development projects using unmanned aerial vehicles and machine learning. Automation in Construction, 168, 105827. https://doi.org/10.1016/j.autcon.2024.105827
[5]Hennebold, C., Klöpfer, K., Lettenbauer, P., & Huber, M. (2022). Machine learning based cost prediction for product development in mechanical engineering. Procedia CIRP, 107, 264-269. https://doi.org/10.1016/j.procir.2022.04.043
[6]Jadhav, A., & Shandilya, S. K. (2023). Reliable machine learning models for estimating effective software development efforts: A comparative analysis. Journal of Engineering Research, 11(4), 362-376. https://doi.org/10.1016/j.jer.2023.100150
[7]Khaliq, Z., Farooq, S. U., & Khan, D. A. (2022). A deep learning-based automated framework for functional user interface testing. Information and Software Technology, 150, 106969. https://doi.org/10.1016/j.infsof.2022.106969
[8]Khuat, T. T., Bassett, R., Otte, E., Grevis-James, A., & Gabrys, B. (2024). Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities. Computers and Chemical Engineering, 182, 108585. https://doi.org/10.1016/j.compchemeng.2024.108585
[9]Lin, C. T., & Huang, S. J. (2024). Technical risk model of machine learning based software project development - A multinational empirical study using modified Delphi-AHP method. Information and Software Technology, 171, 107449. https://doi.org/10.1016/j.infsof.2024.107449
[10]Marcolini, A., Bussola, N., Arbitrio, E., Amgad, M., Jurman, G., & Furlanello, C. (2022). histolab: A Python library for reproducible digital pathology preprocessing with automated testing. SoftwareX, 20, 101237. https://doi.org/10.1016/j.softx.2022.101237
[11]Namvar, M., Intezari, A., Akhlaghpour, S., & Brienza, J. P. (2022). Beyond effective use: Integrating wise reasoning in machine learning development. International Journal of Information Management, 69, 102566. https://doi.org/10.1016/j.ijinfomgt.2022.102566
[12]Saidani, I., Ouni, A., Chouchen, M., & Mkaouer, M. W. (2020). Predicting continuous integration build failures using evolutionary search. Information and Software Technology, 128, 106392. https://doi.org/10.1016/j.infsof.2020.106392
[13]Tran-The, T., Heo, E., Lim, S., Suh, Y., Heo, K. N., Lee, E. E., Lee, H. Y., Kim, E. S., Lee, J. Y., & Jung, S. Y. (2023). Development of machine learning algorithms for scaling-up antibiotic stewardship. International Journal of Medical Informatics, 181, 105300. https://doi.org/10.1016/j.ijmedinf.2023.105300
[14]Tunukovic, V., McKnight, S., Pyle, R., Wang, Z., Mohseni, E., Pierce, S. G., Vithanage, R. K. W., Dobie, G., MacLeod, C. N., Cochran, S., & O'Hare, T. (2024). Unsupervised machine learning for flaw detection in automated ultrasonic testing of carbon fibre reinforced plastic composites. Ultrasonics, 140, 107313. https://doi.org/10.1016/j.ultras.2024.107313
[15]Vaghasiya, J., Khan, M., & Bakhda, T. M. (2024). A meta-analysis of AI and machine learning in project management: Optimizing vaccine development for emerging viral threats in biotechnology. International Journal of Medical Informatics, 195, 105768. https://doi.org/10.1016/j.ijmedinf.2024.105768
[16]Villarroel Ordenes, F., & Silipo, R. (2021). Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. Journal of Business Research, 137, 393-410. https://doi.org/10.1016/j.jbusres.2021.08.036
[17]Wossnig, L., Furtmann, N., Buchanan, A., Kumar, S., & Greiff, V. (2024). Best practices for machine learning in antibody discovery and development. Drug Discovery Today, 29(7), 104025. https://doi.org/10.1016/j.drudis.2024.104025
[18]Cheng, H., Liu, B. J., Sun, X., & Qiu, X. (2025). Data-efficient creativity evaluation in museum cultural creative products: A machine learning framework for data-driven decision-making in product development. Expert Systems with Applications, 297, 129014. https://doi.org/10.1016/j.eswa.2025.129014
[19]Diéguez-Santana, K., & González-Díaz, H. (2023). Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends. Computers in Biology and Medicine, 155, 106638. https://doi.org/10.1016/j.compbiomed.2023.106638
[20]Eugster, R., Orsi, M., Buttitta, G., Serafini, N., Tiboni, M., Casettari, L., Reymond, J. L., Aleandri, S., & Luciani, P. (2024). Leveraging machine learning to streamline the development of liposomal drug delivery systems. Journal of Controlled Release, 376, 1025-1038. https://doi.org/10.1016/j.jconrel.2024.10.065
[21]Helleckes, L. M., Hemmerich, J., Wiechert, W., von Lieres, E., & Grünberger, A. (2022). Machine learning in bioprocess development: From promise to practice. Trends in Biotechnology, 41(6), 817-835. https://doi.org/10.1016/j.tibtech.2022.10.010
[22]Iannacchero, M., Löfgren, J., Mohan, M., Rinke, P., & Vapaavuori, J. (2024). Machine learning-assisted development of polypyrrole-grafted yarns for e-textiles. Materials & Design, 249, 113528. https://doi.org/10.1016/j.matdes.2024.113528
[23]Liu, Q., Zuo, S. M., Peng, S., Zhang, H., Peng, Y., Li, W., Xiong, Y., Lin, R., Feng, Z., Li, H., Yang, J., Wang, G. L., & Kang, H. (2024). Development of machine learning methods for accurate prediction of plant disease resistance. Engineering, 40, 100-110.
[24]Murray, J. D., Lange, J. J., Bennett-Lenane, H., Holm, R., Kuentz, M., O'Dwyer, P. J., & Griffin, B. T. (2023). Advancing algorithmic drug product development: Recommendations for machine learning approaches in drug formulation. European Journal of Pharmaceutical Sciences, 191, 106562. https://doi.org/10.1016/j.ejps.2023.106562
[25]Zhang, G., Borgert, T., Stoffelen, C., & Schmitz, C. (2025). High-throughput and explainable machine learning for lacquer formulations: Enhancing coating development by interpretable models. Progress in Organic Coatings, 205, 109265. https://doi.org/10.1016/j.porgcoat.2025.109265
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sandeep Burte (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.