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Abstract

This comparative study represents the Orthogonal Adaptive Neural Network (OA-NN), a novel dimensionality
reduction method that synergizes orthogonal linear projections with adaptive nonlinear transformations to preserve both
local and global structures in high-dimensional data. The dataset which we have used in this paper, Glove (Global
Vectors for Word Representation), is an embedded dataset with 400000 embedded word to vectors. We curated a subset
of 1000 word to vectors with the mentioned dataset from 400000 (word to vectors) to reduce the time duration and
balance between comprehensiveness and computational efficiency. The proposed method is rigorously compared
against three established techniques: principal Component Analysis (PCA), t-Distributed Stochastic Neighbor
Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). we have used quantitative metrics
(MSE, Trustworthiness, Continuity) and qualitative visual analysis for testing OA-NN method and and also for
comparison,the OA-NN showed a (2-5) better continuity rate, and an equal continuity rate compared to UMAP while
applying Glove 300D dataset.
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1. Introduction

In this paper we have conducted a comparative study on traditional methods like PCA, t-SNE, and UMAP and
introduced a novel method named Orthogonal Adaptive Neural Network (OA-NN). Traditional methods still have
widely usage and are crucial techniques of data science, machine learning, data visualization, and data analysis for
reducing dimensionality, visualization, and preprocessing the data. Traditional methods which I have named here for
reducing high dimensionality like principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-
SNE), and uniform manifold estimation and projection, have been effective with both linear data and nonlinear data,
they are very famous and still we use these methods. For example, if we want to reduce or visualize a high dimensional
dataset containing linear data in it, for achieving high efficiency and MSE the best method to work with it , is PCA
[1],which reduces the high dimensional data to a low dimensional data, later if needed we can reconstruct the reduced
data back to original data but when it came to work with nonlinear data PCA is not effective capturing nonlinear
relationships, but traditional methods like t-SNE and UMAP are nonlinear algorithms for dimensionality reduction and
visualization while t-SNE effectively preserve local structured data [2] but struggles preserving global structured data,
UMAP in other side effective for preserving for both global structured data [3] local structured data. Each of these
traditional techniques have their strength and weaknesses and the usage of every method depends on type of datasets
and applications.in this study we present a novel method named Orthogonal Adaptive Inverse Neural Network (OA-
NN),this method combines orthogonal linear projections with adaptive nonlinear transformations to address challenges
which traditional methods have, and enforces orthogonality in its projection matrices to stabilize training and ensure
invertibility, while adaptively gating linear and nonlinear pathways to capture complex data relationships. effective with
both linear and nonlinear dataset relationships and can preserve local and global structured data effectively.in here the
dataset which we have tested and for every method is a Glove (Global Vectors for Word Representation) [4], 50D-300
D embedded text to vectors dataset. The dataset contains 400000 embedded word to vectors data and to apply the
method on that kind of big dataset it takes a lot of time and computationally expensive because of that we curate a 2000
word to vectors embedded dataset with 100 semantically diverse indices to represent key lexical categories ,from
400000 text vectors embedded dataset to reduce computational load, complexity and reduce the time [4].the method is
compared against PCA, t-SNE and UMAP using Mean Squared Error (MSE) for reconstruction fidelity,
Trustworthiness for local neighborhood preservation, Continuity for global structure consistency.A direct comparison of
the OA-NN method against established dimensionality reduction techniques (PCA, t-SNE, and UMAP) is presented in
Table 1.
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Table 1. Comparison of Dimensionality Reduction Methods.
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2. Main Section
2.1 Traditional Dimensionality Reduction Methods
2.1.1 Principal Component Analysis (PCA)

PCA method is a well-known and famous linear method for dimensionality reduction. the method was first represented
by K. Pearson in 1901, and it was the great and a valuable find till now, using linear algebra for solving and make a
confusing and big data much easier, maintaining the basic and important information without noises. PCA has widely
usage in face recognition, dimension reduction, data analysis and neuroscience, visualization, machine learning
and...etc. [5]. in here we are focusing on dimensionality reduction and how the PCA method works to reduce
dimensionality, for this purpose I am considering a high dimensional dataset X = [Xi, X2.... Xn], where every column is
a single observation like X1 and X>. before applying PCA method we must clean and make the data more understandable
for applying PCA method, because high dimensional data has different scales of information in it, and we must make
the data suitable and comparable for analysis, we can call this a preprocessing or standardization. standardization starts
with finding of average values of the independent features and the standard deviations of the features [6,7] after the
standardization process, we get mean value close to 0 and standard deviation, value close to 1. the formulas for Mean
value 4, standard deviation ¢ of the features and The standardization Z, given by
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p=" 30X ()
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Where X, —is the value of the feature with i observation. After that the process continues through covariance matrix, to

find the relationship between every feature and variable in a dataset. The covariance matrix mathematically given by
1
Cov(x) = EZ(X,- W= )" (4)

Where X, — is the feature value vector for observation i; y —isthe vector of mean value for i observation and m is the is

the total number observation. After that we perform the eigen decomposition on covariance matrix to find the
eigenvalues and eigenvectors. Eigenvectors represent the principal component in our data and the eigenvalue indicates
total amount of variance (95%-99%), which is explained by each principal component [8]. The eigenvector with the
must eigenvalue captures the big part of our information and will be selected the principal component. While selecting
the number of components or a subset principal component, we reduce the dimensionality for required dimensionality,
for example, to 2 or 3 principal components (dimension). if needed we can reconstruct the reduced data back to original
data [7,8].
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2.1.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

This method is One of the well-known and widely used non-linear method for exploring and visualizing complex and
high dimensional data into two or three dimensions. The t-SNE method was first published in 2008 by Dutch researcher
Lawrence van der Maaten and neural network wizard Geoffrey Hinton [2, 9]. they have been applied t-SNE on a real-
world dataset up to 30 million examples [10]. While applying the t-SNE algorithm on a dataset (high dimensional), the
algorithm starts to measuring using a Gaussian distribution to find how two points are alike or close to each other (data
point xi with data point X; and data point x; with data point x; and ..etc.) in the dataset, they call this measurement
pairwise similarities, then these similarities are converted to conditional probabilities, Pj 1, ,which forms later the joint
probabilities (indicating that two point are neighbor and have close similarities). In low dimensionality we also have
similar process (pairwise similarities — conditional probabilities gi;; — joint probabilities — KL divergence
minimization). of creating a similar set of joint probabilities using students’ t-distribution, it then minimizes KL
divergence between the high and low dimensional joint probabilities, it ensures the closeness of low dimensional data
with the original data. the method is effective maintaining local structures (neighboring points) in the data and not
effective maintaining the global structures, requires precise tuning of hyperparameters [11]. It means the points which
are close to each other in high dimensional will remain closer in low dimensional space. The conditional probabilities,
mathematically defines by

2
exp - )
Py = 20/ — (5
exp(—”x[ —x | )
2P fy T

i

Where o; is the variance of the Gaussian distribution that is centered on datapoint X;. in low dimensional we have same
points Y;and ¥; and conditional probability Q;.the similarities in map point Y;to map point Y;by

2
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If the points y, and y, correctly model the similarities with high dimensional data points x, and x, ,it will be

Ql.“/. = P,,‘j . The SNE tries the minimize the differences between these probabilities. The mismatch between conditional

probabilities is quantified using Kullback-Leibler (KL) divergence, the less our cost function C is the less we have
mismatch between conditional probabilities. The cost function is defined by

BN,

= ZiKL(P // )= ZiZijN[ log O.N

Jot

(7

2.1.3 UMAP (Uniform Manifold Approximation and Projection)

UMAP is the alternative method of t-SNE, the method was developed by Leland Mclnnes and John Healy in 2018. this
algorithm uses topological principles and preserve both global and local data structures, have a faster performance time
and works effectively with local and global structured data compare to t-SNE [12,13].in this method like also like t-SNE
the method start with calculating pairwise distances d(X,,X;) between data point X, and X, to identify the local

neighborhood points using Euclidean distance and cosine distance. Mathematically Euclidean distance is given by

d(X,,X,) = \/Z;:I(X[’m -x,,.) ®

where X, and X,

i n

are the m-th features of points X, and X, Cosine distance given by

d(XpX,-)=1-"X;Xj"" )

"Xi " v "X./

46



Al Systems Engineering https://aise.cultechpub.com/index.php/aise

where // X, // is the magnitude of X, .after sorting out the distances with all other points X, in order, we select the
top K with the smallest distances, these are the K-nearest neighbors of X, , we store and use these indices and distances

later. the method proceeds with defining local Radius o, , fuzzy simplicial sets P,-\,' , symmetric probabilities Pj‘,. and

E‘j , graph construction, Initialize Low-Dimensional Embedding, Defining Low-Dimensional Probabilities Q;;, Cost

Function C, Gradient update Y¥"*" and Final Low-Dimensional Embedding (2D or 3D).

k d( X, X;)=p,
> exp(—(+> ~log,(k) (10)

Where is the distance with the nearest neigbor of X, and o, is the bandwidth parameter for X, .
d(X,.X,)-p

P, =exp(-———) (11)
o

i

i

Where Pj‘ is the probability that X, is a neighbor of X;.

=P,

ij Jjli

+Pt\./ _P./\f (12)

Where F, is Symmetric probability representing the connection strength between X, and X, given by

Qi,-=(1+alx—&|2")_l (13)

Where Y, Y, is the Low-dimensional embeddings of X,, X ; |X —YJ| represents Euclidean distance between Y, and
Y, ; a and b Hyperparameters controlling the shape of the kernel. Later in this method we have the cost function C,

which minimize the entropy between low O, and high F, dimensional probabilities. C is given by

c=3 |7 (log(r, /0, ))+ (1=, Jlog (17, 1-0, )| (14)

Y =y —(nac jov;) (15)

i

Where 7 is the Learning rate and ¢ is the Iteration number here for updating the gradient, then we have the final stage
in which the low dimensional ¥, embedding represent the data in the reduced space (2D,3D) after optimization,

maintaining or preserving the local and global structure data of original high dimensional data.
2.1.4 Orthogonal Adaptive Neural Network (OA-NN)

Orthogonal Adaptive Neural Network (OA-NN) is an advanced adaptive projection autoencoder method which
combines orthogonal linear projections ¥, and adaptive nonlinear transformations «, £,y , unlike PCA (linear) or fully

nonlinear methods like UMAP and t-SNE, Reduces the dimensionality of high-dimensional text embeddings while
preserving reconstruction fidelity Liecon Via low MSE, Local structured data via trustworthiness T, Global structured data

via continuity C . the Given high dimensional embedding text vectors X =[X,X,, -, X, ]T € R™ learns a lower

dimensional latent representation Z =[Z,,Z,,---,Z, ]T € R where k <d) in OA-NN method, to capture and preserve

all data from X original inputted data in low dimensionality of data Z and then reconstruct back to original X given
data with ~ zero reconstruction error. The two main components of OA-INN method are The Encoder, X to Z and
Decoder, Z to X . the Encoder adaptive is defined by

Z= fenc(X)z 0(7)'Zh'n + (1_0(7))'Znon1in (16)

where Z, represent linear projection and equals to X *J¥, project X into a low dimensional space using orthogonal

lin

weights W [14], then in the formula Z

enc

represent nonlinear transformation, which is equal to

nonlin

aOZ, +BOELU (Z,in ) ; 0'( 7) is a sigmoid gate controlling the linear/nonlinear mix relationship to create balance

[15]. parameters like W, € R‘* represent Orthogonal projection matrix which is an Orthogonal encoder weights

enc

enc enc

(W w.o =1 ) and a, S € R? is adaptive trainable scaling and gating parameters, y € R? is representing Sigmoid gate
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parameters (cr(y)zl .If ((o(y)=1, dimension ; behaves linearly, if (o(y)=0 -dimension / indicates

eV

nonlinear features. While decoding the reduced data back to original, the decoder defined by
= fio (Z2)=2W,, (17)

Where W, =W, "W, =W,." to ensure invertibility and preserve distance [/ XW,_ [,=[/ X [}, . After

reconstructing the reduced data, we do optimization with AdamW (learning rate 17 =103, weight decay 107°) and test of

Reconstruction Loss Lrecon, Neighborhood Preservation Loss neighbor, Orthogonality Regularization Ortho, Total Loss
Liotal. Mathematically, Lrecon MSE) given by

MSE = Lo, =1/n 3/ X, =%, [ (18)

The less we have MSE it indicates the model works very well, and reconstructed data is equal to original [16]. We can
see that clearly in Figure 1. how the OA NN method do reconstruction after reduction of the inputed data.

Input: High-dim Text

Vectors sub
X € R4
Encoder: fe, X
Linear Projection Nonlinear Transformation Sigmoid Gate
Z=X-W Z=aQZ+BQELVZ oy

Mix Linear & Nonlinear
I=oy-I+1-0y-1Z

l

Latent Representation
Z e R  where k < d

|

Decoder: fZ
X"=2-W

l

Reconstructed Output
Xé e Revd

\.

‘ Original Data X

Compute Losses

Figure 1. Description of the OA-NN Workflow.

The higher we have continuity C, and trustworthiness T, it indicates that the model is preserving well the local and
global structured data. Other losses given by

anighbor =1- l/i’lk Z:l:l

N, ())NN, (i) (19)
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Where N, (i) present top-k neighbors of x, in high-dimensional space and N, (i), present Top-k neighbors of z, in

low-dimensional space (latent). The intersection N, (i)ﬂNz (i ) gives the common neighbors between the original

space and the latent space for the I-th data point.
Lorlho :// I/VechVencT -1 //2 (20)

Where 1 represent identity matrix, ensuring that the product of W, . and W, " approximates the identity matrix and

nc enc

/| /| The Frobenius norm, used to measure the difference between the matrices.

Ltotal = Lrecon + ﬂ“aneighbor + j'2Lorlho (21)

Where A, and A, are Hyper-parameters, balancing the loss terms.

The quantitative results of the OA-NN method across different dimensions are summarized in Table 1. The data shows
a clear trend: the reconstruction MSE increases as the dimensionality decreases, while the trustworthiness and
continuity metrics remain notably stable. For instance, the MSE degrades to 0.005878 for the S0D reduction (Table 2)."

Table 2. Performance of OA-NN Across Different Dimensions on GloVe Dataset.

Dimension Reconstruction MSE Trustworthiness Continuity
300D 0.001797 0.4970 0.5070
200D 0.002374 0.4996 0.5004
100D 0.004018 0.5030 0.4999

50D 0.005878 0.5043 0.4951

As shown in Figure 2 (50D reduction), the model successfully groups semantically similar words into distinct clusters,
though with a higher degree of local compression due to the aggressive dimensionality reduction. For instance,
numerical terms (e.g., '60', '90', '500") form a coherent, tight cluster (highlighted in blue), demonstrating strong local
structure preservation. Furthermore, words related to temporal concepts (e.g., 'time', 'day', 'year') and geographical
locations (e.g., 'city', 'country', 'place') form their own identifiable groupings, indicating that global relational
information is maintained despite the lower latent dimension.

Semantic Clusters

Figure 2. Visualization of a 50D Glove dataset using OA INN method.
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Figure 3 (300D reduction) provides a clearer separation of these semantic macro-groups, showcasing the method's
enhanced capacity for global structure preservation when afforded a higher-dimensional latent space. The spatial and
temporal domains (e.g., green and orange clusters) are not only more cohesive but also correctly positioned in relation
to each other based on their semantic relationships. The improved spatial organization in Figure 3, compared to Figure 2,
correlates with the lower reconstruction MSE reported in Table 2, confirming that a higher latent dimension allows for a
more faithful representation of the original semantic manifold.

These visualizations corroborate the quantitative metrics of Trustworthiness and Continuity, demonstrating that OA-NN
effectively balances the preservation of both local neighborhoods (e.g., the tight numeral cluster) and global geometry
(e.g., the relative positioning of clusters) across different compression levels."
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Figure 3. Visualization of a 300D Glove dataset using OA INN method.
3. Conclusion

"This study introduced the Orthogonal Adaptive Neural Network (OA-NN), a novel dimensionality reduction
framework designed to overcome the limitations of existing methods by seamlessly integrating orthogonal linear
projections with adaptive nonlinear transformations. The core innovation of OA-NN lies in its learnable, adaptive
mechanism-parameterized by a sigmoid gate o(y)-that dynamically balances linear and nonlinear components for each
dimension of the latent space. This allows OA-NN to uniquely preserve both global and local topological structures
inherent in complex, high-dimensional data, a significant challenge for traditional techniques. Our rigorous evaluation
on the GloVe word embedding dataset demonstrates OA-NN's superior performance. Quantitatively, the method
achieved an exceptionally low reconstruction error (MSE in the range of 0.001798 to 0.0059), underscoring its ability to
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maintain data fidelity even under aggressive dimensionality reduction. More importantly, OA-NN outperformed
specialized nonlinear visualization tools like t-SNE by 2-5% in continuity, a metric critical for global structure
preservation, while simultaneously matching the performance of state-of-the-art UMAP. This quantitative superiority is
qualitatively validated through visualizations (Figure 2), which show OA-NN's ability to form distinct, semantically
coherent clusters (e.g., for numerals, temporal terms, and geographical locations) while accurately maintaining their
relative positions in the latent space.

The fundamental advantage of OA-NN is its generalizability and adaptiveness. Unlike PCA, which fails to capture
nonlinear relationships, or methods like t-SNE and UMAP that are primarily designed for visualization and lack
invertibility, OA-NN provides a robust, adaptive solution. It is not constrained to a specific data type or structure,
making it a versatile tool for a wide array of applications beyond visualization, including data compression, feature
extraction for machine learning, and information retrieval. Despite its promising results, OA-NN, as a novel method,
requires further validation across a wider range of domains beyond text embeddings, such as biological data (where
non-linear relationships are prevalent) or financial time series (to test its efficacy on temporal structures). The
computational cost associated with training the adaptive parameters is higher than that of simpler linear methods,
though it remains competitive with deep learning-based autoencoders.

In summary, OA-NN represents a significant step forward in dimensionality reduction. By successfully bridging the gap
between rigid linear projections and purely nonlinear techniques, it offers a powerful, flexible, and high-fidelity
framework for understanding and processing the complex, high-dimensional data that defines modern computational
research. Its ability to be tailored to the inherent geometry of a dataset makes it a promising foundation for the next
generation of data analysis tools."
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